
Prevalence-Value-Accuracy Plots: A New Method
for Comparing Diagnostic Tests Based on

Misclassification Costs
Alan T. Remaley,1* Maureen L. Sampson,1 James M. DeLeo,2 Nancy A. Remaley,3

Beriuse D. Farsi,4 and Mark H. Zweig1

The clinical accuracy of diagnostic tests commonly is
assessed by ROC analysis. ROC plots, however, do not
directly incorporate the effect of prevalence or the value
of the possible test outcomes on test performance, which
are two important factors in the practical utility of a
diagnostic test. We describe a new graphical method,
referred to as a prevalence-value-accuracy (PVA) plot
analysis, which includes, in addition to accuracy, the
effect of prevalence and the cost of misclassifications
(false positives and false negatives) in the comparison
of diagnostic test performance. PVA plots are contour
plots that display the minimum cost attributable to
misclassifications (z-axis) at various optimum decision
thresholds over a range of possible values for preva-
lence (x-axis) and the unit cost ratio (UCR; y-axis), which
is an index of the cost of a false-positive vs a false-
negative test result. Another index based on the cost of
misclassifications can be derived from PVA plots for the
quantitative comparison of test performance. Depend-
ing on the region of the PVA plot that is used to
calculate the misclassification cost index, it can poten-
tially lead to a different interpretation than the ROC
area index on the relative value of different tests. A
PVA-threshold plot, which is a variation of a PVA plot,
is also described for readily identifying the optimum
decision threshold at any given prevalence and UCR. In
summary, the advantages of PVA plot analysis are the
following: (a) it directly incorporates the effect of prev-
alence and misclassification costs in the analysis of test
performance; (b) it yields a quantitative index based on

the costs of misclassifications for comparing diagnostic
tests; (c) it provides a way to restrict the comparison of
diagnostic test performance to a clinically relevant range
of prevalence and UCR; and (d) it can be used to directly
identify an optimum decision threshold based on prev-
alence and misclassification costs.
© 1999 American Association for Clinical Chemistry

Diagnostic tests usually are evaluated by an analysis of
their clinical accuracy (1 ). Clinical accuracy, also called
diagnostic accuracy, refers to how well a test can discrim-
inate between alternative states of health and is typically
assessed by ROC analysis (2, 3). ROC plots display the
specificity and the sensitivity of a test for each possible
decision threshold value, which is the test value that is
used as a cutoff to differentiate between two different
states of health. The ROC plot itself is a measure of
inherent test performance and is not directly affected by
factors related to the practical use of a test, such as the
prevalence of disease and the costs or benefits associated
with the four possible test outcomes (true positives, true
negatives, false positives, and false negatives).

In contrast to clinical accuracy, the clinical efficacy of a
test refers to the practical value or the utility of a test for
a particular clinical situation (4, 5). There are many factors
that can impact on the clinical efficacy of a diagnostic test
but not affect its clinical accuracy. For example, a highly
accurate test that is otherwise invasive, expensive, or not
widely available might not be practically useful and
would, therefore, be considered as having low clinical
efficacy. Two readily quantifiable factors that have a large
effect on clinical efficacy, but not on clinical accuracy, are
prevalence and the cost of misclassifications, which are
the costs associated with false-positive and false-negative
test results. A potentially more relevant analysis for
assessing and comparing the practical utility of diagnostic
tests would, therefore, include these additional factors.
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The effect of prevalence and misclassification costs (MCs)5

on test performance cannot be determined directly from
ROC plots and requires additional computational and
graphical analysis to assess the effect of these factors on
test performance (4, 5).

We describe here a new method, referred to as preva-
lence-value-accuracy (PVA) plot analysis, for assessing
and comparing diagnostic test performance. In addition
to accuracy, PVA plots, unlike ROC plots, directly incor-
porate the effect of prevalence and MCs on test perfor-
mance. PVA plots are produced by identifying the deci-
sion thresholds that yield the lowest overall cost from
misclassifications for a range of possible values for prev-
alence and unit costs associated with false-positive and
false-negative test results. As an example, PVA plot
analysis is used to compare the utility of total serum
cholesterol vs the apolipoprotein B to A-I serum ratio
(apoB/A) for predicting coronary artery disease.

Materials and Methods
Data for the PVA plot analysis of the total-cholesterol test
and the apoB/A test were obtained from a previous study
on the accuracy of various lipid and lipoprotein assays for
predicting the presence of coronary artery disease (6, 7).
The study was performed on 394 subjects, and coronary
artery angiography was used as the definitive test. All
calculations and graphics6 were performed using an Ap-
ple Power Macintosh computer with ExcelTM software
(Microsoft). The areas under the ROC plots were calcu-
lated using RulemakerTM (Digital Medicine). ROC plots
were fitted according to a method described previously
(8 ), and the fitted data were used for the PVA plot
analysis. The volume of the PVA plot was calculated by
determining the volumes of the prismatoid and the un-
derlying rectangle under the cost surface for each unit
square indicated on the x-axis and y-axis of the PVA plot.

Results
comparison of test performance by roc
plot analysis
Two ROC plots, one for total serum cholesterol and the
other for the apoB/A ratio, for predicting the presence of
coronary artery disease are shown in Fig. 1. On the basis
of the overall shape of the two ROC plots, the apoB/A test
appears to be the superior test. The ROC curve for the
apoB/A test lies above and to the left of the curve for the
total-cholesterol test and, therefore, has higher sensitivity

at all levels of specificity than does the total-cholesterol
test. This is evident as well by the area under the plot,
which is a quantitative index of test performance (9 ). The
area under the ROC plot for the apoB/A test is 0.70 and is
greater than the area of 0.55 for the total-cholesterol test.
On the basis of these commonly used criteria for compar-
ing diagnostic tests, the apoB/A test would be considered
to be more clinically accurate than the total-cholesterol
test. The comparison of the clinical accuracy of two tests
by ROC plot analysis does not, however, necessarily
indicate which test is more practically useful or, in other
words, which test has higher clinical efficacy.

calculation of pva plot variables
The five variables on the left side of Fig. 2 are the input
variables for PVA plot analysis. The remaining steps in
Fig. 2 illustrates how the input variables were simplified
and transformed, using Eqs. 1–4, to calculate the variables
for PVA plot analysis. The prevalence, sensitivity, and
specificity are included in the analysis by the use of Eqs.
1 and 2 (step A). These three variables are converted into
a false-positive fraction (FPF, Eq. 1) and a false-negative
fraction (FNF, Eq. 2). The FPF is defined as the fraction of
all tests performed that yield a false-positive test result.
Similarly, the FNF is the fraction of all test results that
yield a false-negative test result. The FPF and FNF are
related to the corresponding false-positive and false-
negative values from the ROC plot, but have been ad-
justed for prevalence (Eqs. 1 and 2). The term “preva-
lence” in Eqs. 1 and 2 represents the pre-test probability of
disease, which may differ from the prevalence of the
disease in the population, based on other independent
laboratory tests or clinical findings that either increase or

5 Nonstandard abbreviations: MC, misclassification cost; PVA, prevalence-
value-accuracy; apoB/A, ratio of serum apolipoprotein B to A-I; FPF, false-
positive fraction; FNF, false-negative fraction; UCR, unit cost ratio; MMC,
minimum MC; and PVAT, PVA-threshold.

6 Software to perform PVA analysis can be downloaded from the following
website: http://www.cc.nih.gov/cp/Chemistry/DrRemaley.html. Inquiries
regarding PVA plot analysis should be addressed to: A.T. Remaley, MD, PhD,
National Institutes of Health, Clinical Center, Clinical Pathology Department,
Bldg. 10/2C-433, Bethesda, MD 20892. Fax 301-402-1885; e-mail
aremaley@nih.gov.

Fig. 1. ROC plots of the apoB/A test (E) and the total-cholesterol test
( ) for predicting coronary artery disease.
Solid lines indicate fitted curves for each test.
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decrease the likelihood of disease. The other two potential
fractional test outcomes, the true-positive fraction and the
true-negative fraction, are inversely related to the misclas-
sified test outcomes and, therefore, are not necessary to
include in the analysis if PVA plots are used only for
comparing tests.

False-positive costs and false-negative costs, which are
the unit costs associated with an individual false-positive
or false-negative test result, are the other two input
variables (Fig. 2). A further simplification can be made
(step B) by combining the false-positive costs and the
false-negative costs into the unit cost ratio (UCR; Eq. 3),
which avoids the necessity for assigning absolute costs for
false-positive and false-negative test results. The UCR
represents the fractional cost of false-positive test results,
whereas (1 2 UCR) represents the fractional cost of
false-negative test results.

Eq. 4 in Fig. 2 shows how the FPF, FNF, and UCR are
used to calculate the MC (step C). The MC represents the
sum of the relative costs associated with false-positive and
false-negative test results. The (UCR 3 FPF) term in Eq. 4
represents the cost associated with false positives, and the
[(1 2 UCR) 3 FNF] term represents the cost associated
with false negatives. Each possible threshold on the ROC
plot, which is defined by a given sensitivity and specific-
ity, would have a different MC value. Furthermore, as can
be observed from Eqs. 1–4, the MC value for each
threshold on the ROC plot will change as the prevalence
and the UCR are changed. In step D of Fig. 2, a further
simplification is made by identifying the minimum MC
(MMC) for a particular prevalence and UCR. The MMC is
the lowest cost attributable to misclassifications and is
associated with the optimum decision threshold on the
ROC plot for a particular prevalence and UCR.

comparison of test performance by pva
plot analysis
A three-dimensional PVA plot for the apoB/A test is
shown in Fig. 3A. Three variables are displayed on the

PVA plot: prevalence (x-axis), UCR (y-axis), and MMC
(z-axis). Only the values at the intersection of the grid
lines on the three-dimensional plot are calculated, and
intermediate values are estimated by linear interpolation.
The results shown in Fig. 3 were calculated from 100
points on the fitted ROC curve (Fig. 1), which were chosen
at intervals of 0.01 of specificity on the x-axis of the
ROC plot.

For each possible pair of prevalence and UCR values
(121 points) corresponding to the intersection of the grid
lines in Fig. 3, Eq. 4 in Fig. 2 was used to compute the MC
for all 100 thresholds on the fitted ROC curve. From the
total of 12 100 calculated MC values, 121 MMC values
were identified and plotted on the z-axis. The cost surface
described by the three-dimensional PVA plot, therefore,
represents the universe of the lowest relative costs attrib-
utable to misclassifications at various decision thresholds
that were optimized for a particular prevalence and UCR.
Any particular point on the cost surface represents the
lowest MC for a given prevalence and UCR and is
associated with the optimum point on the ROC curve.

The cost surface for a useless test that cannot differen-
tiate between a disease and non-disease state better than
by chance (chance test) is shown in Fig. 3B. This plot
represents the worst case or the upper possible limit of
MCs for a test. The maximum value for the MMC on the
chance test is 0.25 and occurs at a prevalence of 0.5 and a
UCR of 0.5. In contrast, a perfect test that produces no
misclassifications and, therefore, has no associated MCs
would have a MMC value equal to 0.0 throughout the plot
and would be represented by the two-dimensional plane
created by the x- and y-axes. As can be seen by the
apoB/A test in Fig. 3A, the cost surface for most diagnos-
tic tests will lie somewhere between the cost surface of the
chance test and the perfect test.

Instead of a three-dimensional plot, the same data in
Fig. 3 are plotted as a contour plot in Fig. 4, which enables
the visual inspection of the entire plot in just two dimen-
sions. The contour gray scale, which corresponds to the

Fig. 2. Diagram and equations describ-
ing how the variables for PVA plots are
defined and calculated.
Sens, sensitivity; Spec, specificity; Prev,
prevalence; FPC, false-positive cost; FNC,
false-negative cost.
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z-axis of the three-dimensional plot, represents the MMC
value, with the darker regions corresponding to higher
costs and the lighter regions to lower costs. The same gray
scale (Fig. 4D) is used throughout Figs. 4 and 5 to facilitate
the comparison between the different PVA plots. Interest-
ingly, the region of the PVA plot containing the highest
costs occurs in the middle of the plot, which corresponds
to prevalence and UCR values that are equal to 0.5. This
occurs, as can be inferred from Eqs. 1–4 in Fig. 2, because
as the value for prevalence or UCR deviates from 0.5, the
overall MC decreases. The costs from either false positives
or false negatives are minimized as the prevalence or UCR

deviates from 0.5 because the optimum decision threshold
shifts to either more sensitive or more specific regions of
the ROC plot to reduce overall MCs.

Compared with the PVA plot of the chance test (Fig.
4B), the apoB/A test (Fig. 4A) has only slightly lower costs
on the four corners of the plot, but has significantly
decreased costs everywhere else. To more quantitatively
compare the cost difference between the apoB/A test and
the chance test, we subtracted the z-values of the apoB/A
test from the z-values of the chance test to produce a
cost-difference plot (Fig. 4C). The cost-difference plot
displays the conditions of prevalence and UCR under
which the apoB/A test performs better than the chance
test. The region of the cost-difference plot containing high
values (see the gray scale in Fig. 4D) indicates the location
on the plot for which there is a greater cost advantage of
the apoB/A test over the chance test. The PVA plot of the
total-cholesterol test is shown in Fig. 5B. The direct
comparison between the total-cholesterol and the apoB/A
test (Fig. 5A) is shown as a cost-difference plot in Fig. 5C.
At all points in Fig. 5C, the costs associated with the
serum cholesterol test were higher than the apoB/A ratio
test, but around the periphery of the plot, particularly for
conditions of low prevalence and a high UCR, the MC
difference between the two tests was relatively small.

identification of optimum thresholds by
roc-threshold plots
In Fig. 6, instead of plotting MMC, we plotted the
corresponding optimum decision threshold on the z-axis
for the apoB/A test. This graph is referred to as a
PVA-threshold (PVAT) plot and can be used to identify
the optimum decision threshold based on prevalence and
MCs. The PVAT plot has an overall diagonal orientation
because prevalence and the UCR have an opposite effect
on the value of the optimum threshold. As prevalence is
increased, the optimum threshold shifts to lower, more
sensitive thresholds. An increase in prevalence without a
change in the value of the threshold would otherwise
increase the number of false-negative diagnoses. The
compensatory leftward shift of the threshold to lower,
more sensitive values reduces the number of false-nega-
tive diagnoses, which minimizes the overall MCs. Alter-
natively, when the UCR is increased because of higher
costs for false-positive diagnoses than for false-negative
diagnoses, the optimum threshold is shifted to higher,
more specific thresholds. The compensatory rightward
shift of the threshold in this case minimizes the overall
MCs by reducing the cost associated with false-positive
diagnoses. Because the axes for prevalence and the UCR
are positioned perpendicular to each other in the PVAT
plot (Fig. 4), the combined effect of these two variables
produces the overall diagonal orientation of the plot. The
PVAT plot illustrates how the optimum decision thresh-
old is varied as the prevalence and UCR are changed to
maintain the lowest MC.

Fig. 3. Three-dimensional PVA plot for the apoB/A test (A) and the
chance test (B).
One hundred points from the fitted ROC curve in Fig. 1 at intervals of 0.01
specificity were used in the calculations.
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cost-volume index of pva plots
Analogous to the area index of a ROC plot, an index of
test performance from a PVA plot can be determined by
calculating the volume under the test surface (Fig. 3),
which is referred to as the cost-volume index. The cost-
volume index of a PVA plot provides a measure of the
relative MCs associated with a diagnostic test. A perfect
test would have no MCs, would have a z-value of 0.0
throughout the plot, and would, therefore, have a total
volume of 0.0. The maximum volume that a test could
have would be equal to the volume for the chance plot
(Figs. 3B and 4B).

The ROC plots for the apoB/A test (test C), the
total-cholesterol test (test E), and three hypothetical tests
(tests A, B, and D) are shown in Fig. 7A. In Fig. 7B, a
normalized area index of the ROC plot and a normalized
cost-volume index of the PVA plot are compared for the
five tests shown in Fig. 7A. The area index and the
cost-volume index were normalized to give a perfect test

an index of 100 and the chance test an index of 0.0.
Interestingly, the area index does not completely corre-
spond to the cost-volume index, particularly for asym-
metrically shaped ROC curves. The relative relationships
among the tests on the normalized cost-volume index
scale (Fig. 7B), and in some cases the rank order of the
tests, are different from the ranking by the area index,
which potentially can lead to different conclusions on the
relative value of different tests. This is particularly true if
only a partial volume (sector volume) from the PVA plot,
perhaps based on a clinically relevant range of prevalence
and UCR, is used to calculate the cost-volume index. For
example, in sector 2 (prevalence, 0.4–0.6; UCR, 0.4–0.6) of
the PVA plot, test D is ranked second in terms of the
cost-volume index, whereas it ranks fourth in the area
index. In sector 3 (prevalence, 0.7–0.9; UCR, 0.2–0.4), the
differences in the cost-volume indices among all of the
tests are relatively small.

The discordance between the area and the cost-volume

Fig. 4. PVA plot analysis of the apoB/A test and the chance test.
(A), PVA plot of the apoB/A test; (B), PVA plot of the chance test; (C), cost-difference plot of the apoB/A test vs the chance test; (D), z-score shown as gray-scale legend.

938 Remaley et al.: PVA Plot Analysis



index occurs because the area index is a global measure of
the ROC curve and all the possible points or thresholds on
the ROC plot contribute equally to the area index. In
contrast, only the optimum thresholds on the ROC plot
that yield the minimum cost for misclassifications (MMC)
contribute to the volume calculation of a PVA plot. As can
be seen from the PVAT plot for the apoB/A test (Fig. 6),
the individual decision thresholds are not used equally
throughout the PVA plot and, therefore, do not impact
equally on the cost-volume index. When the cost-volume
index is calculated from only a clinically relevant part or
sector of the PVA plot, there are a smaller number of
optimum decision thresholds that contribute to the calcu-
lation of the cost-volume index, which potentially can
lead to even greater discrepancies between the cost-
volume index and the ROC area index.

Discussion
ROC plot analysis is one of the most common and useful
ways to examine the clinical accuracy of diagnostic tests.

ROC plots, however, do not directly incorporate the effect
of prevalence and MCs on test performance. The intrinsic
test information (sensitivity and specificity) of the PVA
plot is the same as for the ROC plot, but this information
is transformed by PVA plots in such a way that the effect
of prevalence and MCs on test performance can be readily
observed and quantified.

There are three principal advantages of PVA plot
analysis. The first advantage is that PVA plots display the
exact conditions of prevalence and UCR for which one
test is superior to another. For example, although the
apoB/A test is better overall than the total-cholesterol
test, it is evident from the cost-difference plot (Fig. 5C)
that for some values of prevalence and UCR, the advan-
tage of the apoB/A test over the total-cholesterol test is
relatively small. In situations in which there is no clear
advantage in the MCs for one test over another, other
practical factors, such as the cost of performing the test,
should also be considered to determine which test to use.
A sense of the importance of any difference in the

Fig. 5. PVA plot analysis of the apoB/A test and the total-cholesterol test.
(A), PVA plot of the apoB/A test; (B), PVA plot of the total-cholesterol test; (C), cost-difference plot of the apoB/A test vs the total-cholesterol test; (D), z-score shown
as gray-scale legend.
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cost-index scale can be obtained by using the normalized
scale shown in Fig. 7. One could also perform PVA
analysis on the confidence interval surrounding a ROC
curve to determine whether any cost difference between
two ROC curves is statistically different.

The second advantage of PVA plot analysis is that it
provides a way to readily identify the optimum threshold
for discriminating between a disease and a non-disease
state at any given prevalence and UCR. By plotting a
tangent to a ROC curve, one can also identify the opti-
mum decision threshold at a particular prevalence and
MCs (2, 3). In addition, methods for scaling ROC curves
based on prevalence and MCs have been described for
identifying the optimum decision threshold (10 ). These
methods, however, can be difficult to perform accurately
if the ROC curve is not smooth and must be repeated for
each condition of prevalence and UCR tested. More
importantly, because the pre-test prevalence of a disease
and the UCR cannot always be defined precisely and can
often vary depending on the clinical circumstance, it
would be desirable to identify the optimum threshold for
a range of possible values for prevalence and the UCR. As
can be seen in Fig. 6, the optimum decision threshold can
be identified quickly and directly from a PVAT plot for
any desired range of prevalence and UCR.

Depending on the clinical circumstance for which a test
is used, the optimum value for the UCR and, in particular,
the value for prevalence can change. For example, if a test
is used for screening for a disease, a lower prevalence and
a lower UCR would more likely be optimum. If the same
test is used for confirming a diagnoses, then a higher
prevalence (pre-test probability) and a higher UCR would
more often be suitable. A false-positive confirmatory test
may lead to inappropriate therapy, which may be costly
not only in terms of the cost of the inappropriate treat-

ment, but also because of the consequences of not treating
the disease that was misdiagnosed. In the case of a
false-positive screening test result, it is more likely to be
rectified in a less costly manner by subsequent alternative
laboratory tests. Because of the typically higher false-
positive costs for a confirmatory test, the UCR would
typically be higher (Eq. 3 in Fig. 2).

The third advantage of PVA plot analysis is that the
cost-volume index provides a more intuitive measure
than the area index of a ROC plot for comparing tests. The
area under the ROC plot provides a way to quantitatively

Fig. 6. PVAT plot of the apoB/A test.
Contour levels for 10 possible ranges for the decision threshold of the apoB/A
ratio are shown, using the indicated z-scale.

Fig. 7. Cost-volume index of PVA plots.
(A), ROC plots for the apoB/A test (Test C), total-cholesterol test (Test E), and
three hypothetical tests (Tests A, B, and D) are shown. (B), comparison of the
normalized ROC area index and the normalized PVA cost-volume index for the
tests shown in A. Sector volume was calculated for the following prevalence and
UCR ranges: sector 1 (prevalence, 0–0.2; UCR, 0.7–0.9), sector 2 (prevalence,
0.4–0.6; UCR, 0.4–0.6), and sector 3 (prevalence, 0.7–0.9; UCR, 0.2–0.4).
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compare tests, but it does not have any operational
meaning in terms of how a diagnostic test is used; it has
also been criticized on the basis of its utility for comparing
diagnostic tests (10 ). In contrast, the cost-volume index of
the PVA plot can be defined operationally as a measure of
the cost of misclassifications for a test. Furthermore, in
contrast to the area index, once a clinically relevant range
for the prevalence and UCR is known, a partial cost-
volume index can be readily calculated from the PVA
plot. As shown in Fig. 7, the area index of a ROC plot
might lead to choosing one test over another that is not
necessarily significantly better when prevalence and the
UCR are considered. This is because the area index is a
global index, whereas the cost-volume index is weighted
on the basis of the optimum thresholds that yield the
MMCs and can be further restricted to just a clinically
relevant range of values for prevalence and the UCR.

In summary, PVA plot analysis is a new graphical and
analytical technique for comparing test performance. PVA
plot analysis can be performed readily and quickly on a
personal computer, using widely available database soft-
ware. PVA plots, however, are best viewed as complimen-
tary to ROC plot analysis and should be produced follow-
ing ROC plot analysis. Unlike ROC plots, PVA plots do
not display sensitivity and specificity, which are impor-
tant and well-recognized factors for describing test per-
formance. It is also necessary to first calculate the sensi-
tivity and specificity pairs of the ROC plot to perform the
calculations for making a PVA plot. Another limitation of
PVA plots is that they can be used to graphically compare
only two tests at a time, although one can compare the
cost-volume index of more than two tests. The subsequent

analysis of diagnostic tests by PVA plots, however, is
useful because it enhances the graphical evaluation of test
performance, by including additional factors that are not
in ROC plots.
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